Accelerated Vector Pruning for Optimal POMDP Solvers
نویسندگان
چکیده
Partially Observable Markov Decision Processes (POMDPs) are powerful models for planning under uncertainty in partially observable domains. However, computing optimal solutions for POMDPs is challenging because of the high computational requirements of POMDP solution algorithms. Several algorithms use a subroutine to prune dominated vectors in value functions, which requires a large number of linear programs (LPs) to be solved and it represents a large part of the total running time. In this paper we show how the LPs in POMDP pruning subroutines can be decomposed using a Benders decomposition. The resulting algorithm incrementally adds LP constraints and uses only a small fraction of the constraints. Our algorithm significantly improves the performance of existing pruning methods and the commonly used incremental pruning algorithm. Our new variant of incremental pruning is the fastest optimal pruning-based POMDP algorithm.
منابع مشابه
A POMDP Framework to Find Optimal Inspection and Maintenance Policies via Availability and Profit Maximization for Manufacturing Systems
Maintenance can be the factor of either increasing or decreasing system's availability, so it is valuable work to evaluate a maintenance policy from cost and availability point of view, simultaneously and according to decision maker's priorities. This study proposes a Partially Observable Markov Decision Process (POMDP) framework for a partially observable and stochastically deteriorating syste...
متن کاملHindsight is Only 50/50: Unsuitability of MDP based Approximate POMDP Solvers for Multi-resolution Information Gathering
Partially Observable Markov Decision Processes (POMDPs) offer an elegant framework to model sequential decision making in uncertain environments. Solving POMDPs online is an active area of research and given the size of real-world problems approximate solvers are used. Recently, a few approaches have been suggested for solving POMDPs by using MDP solvers in conjunction with imitation learning. ...
متن کاملAn Online POMDP Solver for Uncertainty Planning in Dynamic Environment
Motion planning under uncertainty is important for reliable robot operations in uncertain and dynamic environments. Partially Observable Markov Decision Process (POMDP) is a general and systematic framework for motion planning under uncertainty. To cope with dynamic environment well, we often need to modify the POMDP model during runtime. However, despite recent tremendous advances in POMDP pla...
متن کاملA Fast Pairwise Heuristic for Planning under Uncertainty
POMDP (Partially Observable Markov Decision Process) is a mathematical framework that models planning under uncertainty. Solving a POMDP is an intractable problem and even the state of the art POMDP solvers are too computationally expensive for large domains. This is a major bottleneck. In this paper, we propose a new heuristic, called the pairwise heuristic, that can be used in a one-step gree...
متن کاملEfficient Maximization in Solving POMDPs
We present a simple, yet effective improvement to the dynamic programming algorithm for solving partially observable Markov decision processes. The technique targets the vector pruning operation during the maximization step, a key source of complexity in POMDP algorithms. We identify two types of structures in the belief space and exploit them to reduce significantly the number of constraints i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017